
CUDA: SCALABLE PARALLEL PROGRAMMING
FOR HIGH-PERFORMANCE SCIENTIFIC COMPUTING

David Luebke

NVIDIA Corporation

ABSTRACT

Graphics processing units (GPUs) originally designed for
computer video cards have emerged as the most powerful
chip in a high-performance workstation. Unlike multicore
CPU architectures, which currently ship with two or four
cores, GPU architectures are “manycore” with hundreds of
cores capable of running thousands of threads in parallel.
NVIDIA’s CUDA is a co-evolved hardware-software
architecture that enables high-performance computing
developers to harness the tremendous computational power
and memory bandwidth of the GPU in a familiar
programming environment – the C programming language.
We describe the CUDA programming model and motivate
its use in the biomedical imaging community.

1. MOTIVATION

GPU computing, or the use of graphics processors for
general-purpose computing, began in earnest several years
ago [1]. Work to date has included much promising research
in the biomedical domain (see for example [2-5]). However,
this research initially involved programming the GPU via a
graphics language, which limited its flexibility and was
arcane for non-graphics experts. NVIDIA's CUDA platform
changed that, providing a massively multithreaded general-
purpose architecture with up to 128 processor cores and
thousands of threads in flight, programmable in C and
capable of hundreds of billions of floating-point operations
each second [6]. CUDA runs on all current NVIDIA GPUs,
including the HPC-oriented Tesla product line. The
ubiquitous nature of these GPUs (over 50 million CUDA-
capable boards have been sold as of this writing) makes
them a compelling platform for accelerating high-
performance computing (HPC) applications.

How much can GPU computing speed up a real-world
science or engineering code? Researchers and companies
are achieving speedups ranging from 10× to 100× (and
sometimes more!) by using CUDA, across domains ranging
from computational chemistry [7], to astrophysics [8], to CT
[5] and MRI [9], to gene sequencing [10]. Examples from
biomedical imaging include work at Friedrich-Alexander-
Universität Erlangen-Nürnberg to accelerate CT
reconstruction on CUDA using the FDK algorithm [11] and

work at the University of Illinois that accelerates advanced
MRI reconstruction techniques using CUDA [12]. The latter
focuses on reconstruction for non-Cartesian scan paths,
which reduces image-space error from 45% for
conventional reconstruction to 12% but has been considered
computationally infeasible in practice. The approach runs
13x faster on an NVIDIA Quadro FX5600 GPU than on an
Intel Core 2 Extreme quad-core CPU, achieving
reconstruction times of under 2 minutes for a 1283 volume.

Speedups of this magnitude can change science. In a
medical setting, order-of-magnitude speedups can cause a
phase change in clinical practice, for example by moving an
analysis from the lab with a turnaround time of days, to the
exam room with a turnaround of minutes. Another phase
change occurs in biomedical imaging when a technique
moves from evaluative (e.g. checking afterwards to see if
the stint was emplaced properly) to interactive (using
imaging throughout to guide the emplacement procedure).
In short, the potential to greatly accelerate computational
techniques opens exciting avenues for biomedical imaging
research. This paper gives a high-level survey of CUDA
concepts, an entry point for interested developers, and a
“feel” for CUDA programming.

2. THE CUDA PROGRAMMING MODEL

The fundamental strength of the GPU is its extremely
parallel nature. The CUDA programming model allows
developers to exploit that parallelism by writing natural,
straightforward C code that will then run in thousands or
millions of parallel invocations, or threads. Matrix addition
will serve as a simple example. To add two N×N matrices
on the CPU in C, one would write a doubly-nested for loop:

// add 2 matrices on the CPU:
void addMatrix(float *a, float *b,

 float *c, int N)
{
 int i, j, index;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 index = i + j * N;
 c[index]=a[index] + b[index];
 }
 }
}

836978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008

void main()
{

 addMatrix(a, b, c, N);
}

In CUDA, one writes a C function, called a kernel, to
compute one element in the matrix, and invokes as many
threads to run that function as the matrix has elements. In
each thread the kernel runs with a predefined structure
threadIdx indicating which of the many threads is running:

// add 2 matrices on the GPU (simplified)
__global__ void addMatrix(float *a,float *b,
 float *c, int N)
{
 int i= threadIdx.x;
 int j= threadIdx.y;
 int index= i + j * N;
 c[index]= a[index] + b[index];
}
void main()
{
 // run addMatrix in 1 block of NxN threads:
 dim3 blocksize(N, N),
 addMatrix<<<1, blocksize>>>(a, b, c, N);
}

Here the __global__ declaration specifier indicates a
kernel function that will run on the GPU, and the
<<<N, N>>> syntax indicates that the addMatrix() function
will be invoked across a group of threads run in parallel,
called a thread block. Thread blocks may be one-, two-, or
three-dimensional, providing a natural way to invoke
computation across the elements in a domain such as a
vector, matrix, or field.

CUDA makes three key refinements to the core concept of
running kernel functions across many parallel threads:
hierarchical thread blocks, shared memory, and barrier
synchronization.

2.1. Hierarchical thread blocks

Thread blocks may contain up to 512 threads on an
NVIDIA Tesla architecture GPU, but kernels are invoked
on a grid consisting of many thread blocks that are
scheduled independently. All the threads in all the blocks in
a grid execute the kernel and then exit. Thus the CUDA
code given above needs to be extended slightly:

// add 2 matrices on the GPU (scalable)
__global__ void addMatrix(float *a,float *b,
 float *c, int N)
{
 int i=blockIdx.x*blockDim.x+threadIdx.x;
 int j=blockIdx.y*blockDim.y+threadIdx.y;
 int index = i + j * N;
 if (i < N && j < N)
 c[index]= a[index] + b[index];
}

// not shown: allocate & copy matrices to GPU
void main()
{
 dim3 dimBlock (16, 16);
 dim3 dimGrid (N/dimBlk.x, N/dimBlk.y);
 // run addMatrix in blocks of 16x16 threads:
 addMatrix<<<dimGrid, dimBlock>>>(a, b, c,N);
}

Here a thread block size of 16x16 = 256 threads was
chosen somewhat arbitrarily, and a grid is created with
enough blocks to have one thread per matrix element as
before. The threads in each thread block are run in parallel;
multiple thread blocks may be run one after another or in
parallel depending on the resources of the GPU. This
hierarchical organization – with thread blocks restricted to a
finite size and a grid of many blocks – enables programmers
to write scalable code. A CUDA program will run on a low-
cost, low-power GPU capable of processing only one block
of threads in parallel, but scale efficiently in performance up
to high-end GPUs capable of running dozens of blocks, and
to future GPUs capable of running hundreds of blocks.

2.2. Shared memory

In our simple matrix addition example, threads can
efficiently run independently: no thread needs to know the
elements being accessed by other threads. Often however
many threads can solve a problem more efficiently by
cooperating, sharing the results of computations or memory
fetches. CUDA enables this cooperation by providing
shared memory where kernels can store data – e.g. variables
or arrays – that are visible to all threads in a thread block.
For example, the threads in a block could compute the sum
of the elements in an array by each placing one element into
an array in shared memory, then adding the element next to
it, then the element located four array slots away, then eight,
and so on. All the other threads in the block are doing the
same thing in parallel – they are cooperating by computing
partial sums through shared memory. Shared memory is on-
chip and thus small (16K on NVIDIA’s current GPUs) but
extremely fast, so exploiting shared memory makes this
summing operation dramatically faster.

2.3 Barrier synchronization

Once threads are operating in parallel on the same
memory, it becomes important to provide a mechanism that
guarantees (for example) that one thread will not attempt to
read a result before another thread has finished writing it.
CUDA provides the __syncthreads() intrinsic function for
this purpose. __syncthreads() acts as a barrier at which
all threads in the block must wait before any are allowed to
proceed. CUDA’s synchronization is intentionally simple

837

and lightweight, so that programmers can use a barrier to
synchronize before threads read or write to shared memory.

3. SUMMARY

NVIDIA GPUs provide massive computation resources,
with up to hundreds of cores running thousands of threads.
CUDA makes that raw computational power accessible and
easy to program by allowing the user to write natural C code
which is then run by thousands or millions of threads.
Threads are organized in a two-level hierarchy of blocks
and grids. Threads run in parallel with other threads in their
thread block and can intercommunicate via shared memory,
with simple barriers to synchronize. This minimal set of
extensions to C nonetheless exposes the power of massive
parallel programming.

Researchers around the world and across all scientific and
engineering disciplines are successfully using CUDA and
NVIDIA GPUs to speed their codes up by one to two orders
of magnitude. We have attempted to motivate the use of
GPU computing in biomedical imaging and provide a brief
overview of the “feel” of CUDA programming. We
encourage researchers to learn more, see what others are
publishing, and try CUDA themselves [13].

11. REFERENCES

[1] See http://gpgpu.org.

[2] G. C. Sharp, N. Kandasamy, H. Singh, and M. Folkert, “GPU-
based streaming architectures for fast cone-beam CT image recon
struction and Demons deformable registration,” Physics in
Medicine and Biology, 2007.

[3] C. Vetter and C. Guetter and C. Xu and R. Westermann, “Non-
rigid multi-modal registration on the GPU,” Medical Imaging
2007: Image Processing, SPIE, vol. 6512, Mar 2007.

[4] J. Gu and L. Gu, “Fast DDR Generation Based on GPU,” Int’l
Journal of Computer Assisted Radiology and Surgery, Jun 2006.

[5] F. Xu and K. Mueller. “Real-Time 3D Computed Tomographic
Reconstruction Using Commodity Graphics Hardware,” Physics in
Medicine and Biology, vol. 52, pp. 3405–3419, 2007.

[6] NVIDIA. 2007. CUDA Programming Guide 1.1; see
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_
CUDA_Programming_Guide_1.1.pdf.

[7] J. Stone, J. Phillips, D. Hardy, P. Freddolino, L. Trabuco, K.
Schulten. “Accelerating molecular modeling applications with
graphics processors,” Journal of Computational Chemistry, Vol.
28, No. 16 , pp 2618 – 2640, 25 Sep 2007.

[8] R. G. Belleman, J. Bédorf and S. F. Portegies, “High
Performance Direct Gravitational N-body Simulations on Graphics

Processing Units II: An implementation in CUDA,” arXiv:0707.
0438v2 [astro-ph], Jul 2007 (Accepted to New Astronomy).

[9] W. Jeong, P. T. Fletcher, R. Tao, and R.T. Whitaker,
“Interactive Visualization of Volumetric White Matter
Connectivity in DT-MRI Using a Parallel-Hardware Hamilton-
Jacobi Solver,” Proc. IEEE Visualization 007, Oct 2007.

[10] M. C Schatz, C. Trapnell, A. L Delcher, and A. Varshney,
“MUMmerGPU: High-throughput sequence alignment using
Graphics Processing Units,” BMC Bioinformatics 2007, 8:474,
Dec 2007.

[11] H. Scherl, B. Keck, M. Kowarschik, and J. Hornegger. “Fast
GPU-Based CT Reconstruction using the Common Unified Device
Architecture (CUDA),” 2007 Nuclear Science Symposium and
Medical Imaging Conference, Honolulu HW (Oct 2007).

[12] S. Stone, J. Haldar, S. Tsao, W. Hwu, Z. Liang, B. Sutton.
“Accelerating Advanced MRI Reconstructions on GPUs”, ACM
Frontiers in Computing, Ischia, Italy, to appear (May 2008).

[13] See http://nvidia.com/cuda

838

